The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis
نویسندگان
چکیده
Oxidative stress is reported to regulate several apoptotic and necrotic cell death pathways in auditory tissues. Poly(ADP-ribose) polymerase-1 (PARP-1) can be activated under oxidative stress, which is the hallmark of parthanatos. Autophagy, which serves either a pro-survival or pro-death function, can also be stimulated by oxidative stress, but the role of autophagy and its relationship with parthanatos underlying this activation in the inner ear remains unknown. In this study, we established an oxidative stress model in vitro by glucose oxidase/glucose (GO/G), which could continuously generate low concentrations of H2O2 to mimic continuous exposure to H2O2 in physiological conditions, for investigation of oxidative stress-induced cell death mechanisms and the regulatory role of PARP-1 in this process. We observed that GO/G induced stria marginal cells (MCs) death via upregulation of PARP-1 expression, accumulation of polyADP-ribose (PAR) polymers, decline of mitochondrial membrane potential (MMP) and nuclear translocation of apoptosis-inducing factor (AIF), which all are biochemical features of parthanatos. PARP-1 knockdown rescued GO/G-induced MCs death, as well as abrogated downstream molecular events of PARP-1 activation. In addition, we demonstrated that GO/G stimulated autophagy and PARP-1 knockdown suppressed GO/G-induced autophagy in MCs. Interestingly, autophagy suppression by 3-Methyladenine (3-MA) accelerated GO/G-induced parthanatos, indicating a pro-survival function of autophagy in GO/G-induced MCs death. Taken together, these data suggested that PARP-1 played dual roles by modulating parthanatos and autophagy in oxidative stress-induced MCs death, which may be considered as a promising therapeutic target for ameliorating oxidative stress-related hearing disorders.
منابع مشابه
Role of the ERK Pathway for Oxidant-Induced Parthanatos in Human Lymphocytes
Reactive oxygen species (ROS) are formed by myeloid cells as a defense strategy against microorganisms. ROS however also trigger poly(ADP-ribose) polymerase 1- (PARP-1) dependent cell death (parthanatos) in adjacent lymphocytes, which has been forwarded as a mechanism of immune escape in several forms of cancer. The present study assessed the role of mitogen-activated protein kinases (MAPKs), i...
متن کاملInvolvement of PARPs in cell death.
Poly(ADP-ribosylation), an NAD dependent reaction culminating in the formation of ADP-ribose monomers, and their following polymerization, is activated as an emergency process in crucial situations such as DNA damage and cellular stress; due to this crucial function, the modulation of poly(ADP-ribosylation) during cell death has been investigated. This review will describe the properties of pol...
متن کاملRNF146 Inhibits Excessive Autophagy by Modulating the Wnt-β-Catenin Pathway in Glutamate Excitotoxicity Injury
Glutamate induced excitotoxicity is common in diverse neurological disorders. RNF146 as an E3 ubiquitin ligase protects neurons against excitotoxicity via interfering with Poly (ADP-ribose) (PAR) polymer-induced cell death (parthanatos). However, the neuroprotective role of RNF146 has not been fully understood. We aimed to investigate the role of RNF146 in modulating autophagy in HT22 cells und...
متن کاملOxidative Stress-Related Parthanatos of Circulating Mononuclear Leukocytes in Heart Failure
Background The present study aims to examine the oxidative stress-related activation of poly(ADP-ribose) polymerase (PARP), a cause of parthanatos in circulating mononuclear leukocytes of patients with chronic heart failure (CHF), that was rarely investigated in the human setting yet. Methods Patients with CHF (n = 20) and age- and body mass index-matched volunteers (n = 15) with a normal hea...
متن کاملNeurological and Histological Consequences Induced by In Vivo Cerebral Oxidative Stress: Evidence for Beneficial Effects of SRT1720, a Sirtuin 1 Activator, and Sirtuin 1-Mediated Neuroprotective Effects of Poly(ADP-ribose) Polymerase Inhibition
Poly(ADP-ribose)polymerase and sirtuin 1 are both NAD(+)-dependent enzymes. In vitro oxidative stress activates poly(ADP-ribose)polymerase, decreases NAD(+) level, sirtuin 1 activity and finally leads to cell death. Poly(ADP-ribose)polymerase hyperactivation contributes to cell death. In addition, poly(ADP-ribose)polymerase inhibition restores NAD(+) level and sirtuin 1 activity in vitro. In vi...
متن کامل